Нейтронные звёзды


  • 0
Нейтронная звезда в разрезе (v.uecdn.es).

Нейтронные звёзды

Tags : 

 Стенгазета «Главные астрономические открытия: рассказ астрофизика Сергея Попова о десяти важнейших астрономических открытиях со времён Галилея до наших дней»
Нейтронная звезда в разрезе (v.uecdn.es).

 
 Стенгазета «Главные астрономические открытия: рассказ астрофизика Сергея Попова о десяти важнейших астрономических открытиях со времён Галилея до наших дней»
Магнитар (тип нейтронных звёзд с исключительно сильным магнитным полем). Рисунок (ESO/L. Calçada).

 
 Стенгазета «Главные астрономические открытия: рассказ астрофизика Сергея Попова о десяти важнейших астрономических открытиях со времён Галилея до наших дней»
Джоселин Белл Бернелл, первооткрыватель пульсаров (alchetron.com).

 
 Стенгазета «Главные астрономические открытия: рассказ астрофизика Сергея Попова о десяти важнейших астрономических открытиях со времён Галилея до наших дней»
Нейтронная звезда EXO 0748-676 (синяя сфера в изображении) вращается вокруг общего центра масс вместе с обычной звездой. Художник показал, как вещество обычной звезды перетекает на нейтронную звезду под действием её сильной гравитации (NASA).

 
 Стенгазета «Главные астрономические открытия: рассказ астрофизика Сергея Попова о десяти важнейших астрономических открытиях со времён Галилея до наших дней»
Кассиопея A – остаток сверхновой в созвездии Кассиопея, на расстоянии 11 тысяч световых лет от Солнца. В результате взрыва, который произошёл примерно в 1680 году, образовалась нейтронная звезда – самая молодая из наблюдаемых нейтронных звёзд нашей Галактики. Изображение составлено из трёх фотографий. Красный цвет – данные в инфракрасном диапазоне (телескоп «Спитцер»), оранжевый – видимый диапазон (телескоп «Хаббл»), зелёный и синий – рентгеновский диапазон (телескоп «Чандра»). На врезке – иллюстрация художника (X-ray: NASA / CXC / UNAM / Ioffe / D.Page, P.Shternin et al; Optical: NASA / STScI; Illustration: NASA / CXC / M.Weiss).

Следующее важное открытие шестидесятых годов – нейтронные звезды. Нейтронными звёздами я занимаюсь профессионально, у меня даже есть про них популярная книжка «Суперобъекты: звезды размером с город». Открыты они были совершенно случайно, и это открытие в 1974 году было отмечено Нобелевской премией. Интересно, что девушка, которая их, собственно, и открыла, не была включена в число лауреатов – это считается одной из самых больших ошибок Нобелевского комитета. Нейтронные звёзды вобрали в себя всю физику, и это очень легко объяснить. Мы берём любой объект, начинаем его сжимать, и он становится всё концентрированнее. Выше температура, плотность, магнитные поля, гравитационные – всё интереснее и интереснее. Мы приближаемся к экстремальному режиму. Если вы пережмёте, то всё упадёт в чёрную дыру. И тогда информация к нам из-под горизонта не попадёт. А нейтронная звезда – это там, где природа вовремя остановилась. Часть процессов нам видна напрямую, если это происходит вблизи поверхности, часть не видна, потому что это происходит под поверхностью и в центре, но косвенными методами мы можем это вытаскивать. И это чрезвычайно важная, интересная область физики и астрофизики. Есть большая популяция самых разных нейтронных звёзд, их любят за эти экстремальные свойства. Пульсары используют для проверок теория гравитации, за открытие первой двойной нейтронной звезды (нейтронная звезда плюс нейтронная звезда) тоже дали Нобелевскую премию по физике. Это стало на тот момент лучшим тестом для проверки Общей теории относительности. Сейчас мы ждём, когда будут открыты слияния нейтронных звёзд и гравитационные волны от этого события. Это крайне интересно потому, что мы всё-таки хотим в деталях узнать, что находится внутри нейтронной звезды. Чтобы узнать, что находится внутри какого-то предмета, его надо разобрать. Чтобы разломать нейтронную звезду, нужна другая нейтронная звезда. Поэтому самый лучший способ это сделать – попытаться увидеть, как две нейтронные звезды сольются, при этом произойдёт яркая вспышка. И, по всей видимости, вспышки мы такие наблюдаем. Много важной информации приходит с гравитационными волнами. И мы ждём, пока детектор LIGO или достигнет такой чувствительности, чтобы точно за несколько месяцев увидеть это событие, или просто нам повезёт, и на расстоянии меньше, чем 100 млн световых лет произойдёт такое слияние, и тогда LIGO сможет это увидеть. Тогда мы сможем узнать, из чего состоят нейтронные звёзды. Это очень важный вопрос, важный не только для астрономии. То есть снова мы говорим о том, что важное астрономическое открытие выходит за рамки просто астрономии. В данном случае это будет важно для ядерной физики, и отчасти для физики элементарных частиц.


Это – глава из стенгазеты, выпущенной благотворительным проектом «Коротко и ясно о самом интересном». Нажмите на миниатюру газеты ниже и читайте остальные статьи по интересующей вас тематике. Спасибо!

Материал выпуска любезно предоставил Сергей Борисович Попов – астрофизик, доктор физико-математических наук, профессор Российской академии наук, ведущий научный сотрудник Государственного астрономического института им. Штернберга Московского государственного университета, лауреат нескольких престижных премий в области науки и просвещения. Надеемся, что знакомство с выпуском будет полезно и школьникам, и родителям, и учителям – особенно сейчас, когда астрономия снова вошла в список обязательных школьных предметов (приказ №506 Минобрнауки от 7 июня 2017 года).

Все стенгазеты, изданные нашим благотворительным проектом «Коротко и ясно о самом интересном», ждут вас на сайте к-я.рф. Есть также группа вконтакте и ветка на сайте Питерских родителей Литтван, где мы обсуждаем выход новых газет. Любой желающий может бесплатно получать наши газеты в местах раздачи в Петербурге.

 

Буду рад, если вы найдёте ошибку, выделите её и нажмёте Ctrl+Enter.





Об авторе

Георгий Попов

Редактор сайта «Коротко и ясно о самом интересном»

Комментарии:

Добавить комментарий

Ваш e-mail не будет опубликован.

Спасибо!

Теперь редакторы в курсе.

Cloudim - .